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By introducing displacement functions as well as stress functions, two independent state
equations with variable coe$cients are established from the three-dimensional equations of
a radially inhomogeneous spherically isotropic piezoelastic medium. By virtue of the
laminated approximation method, the state equations are then transformed into the ones
with constant variables in each layer, and the state variable solutions are presented. Based
on the solutions, linear algebraic equations about the state variables only at the inner and
outer spherical surfaces are derived by utilizing the continuity conditions at each interface.
Frequency equations corresponding to two independent classes of vibrations are "nally
obtained from the free surface conditions. Numerical calculations are presented and the
e!ect of the material gradient index on natural frequencies is discussed.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

The mechanics of piezoelectric materials has been an important branch of solid mechanics
in recent years. In particular, the research of piezoelectric plate and shell structures has
attracted much attention from both engineers and scientists [1}3]. Great achievements
have been made in the analysis of piezoelectric spherical shells. For example, Shu'lga [4]
utilized separation formulae for displacements and stresses to simplify the basic equations
of piezoelasticity for spherical isotropy, and obtained two independent classes of vibrations.
Chen and Ding [5] exactly analyzed a rotating piezoelectric hollow sphere by introducing
displacement functions. Chen et al. [6] recently investigated the coupled-free vibration
problem of a submerged piezoelectric spherical shell.

Studies on functionally graded material (FGM) have been extensive in the last decade
[7]. The dynamic analysis of FGM elastic plates and shells has been of particular research
interest recently [8, 9]. Based on the three-dimensional elasticity equations for spherical
isotropy, Chen et al. [10] exactly analyzed the coupled-free vibration of a #uid-"lled FGM
hollow sphere. By introducing displacement functions and using the Frobenius power-series
method, Chen [11] recently considered the vibration problem of spherically isotropic
piezoelastic spheres with a functionally graded property that the material constants vary
with the radial co-ordinate in a power law. It should be noted that laminated models have
0022-460X/02/110103#12 $35.00/0 � 2002 Elsevier Science Ltd.
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been widely employed to analyze functionally graded materials or structures in the study of
FGM [7, 12, 13]. However, with the increasing number of involved layers, conventional
methods used by many authors usually lead to lower numerical e$ciency because of the
larger-scaled "nal solving matrix. The state-space method has shown to be very e!ective in
the analysis of laminated structures because of the associated lower order solvingmatrix. Its
recent applications in piezoelectric materials and structures can be found in references
[14}17].

Based on the three-dimensional dynamic equations for spherically isotropic
piezoelasticity, this study derives two decoupled state equations with variable coe$cients
through the introduction of displacement functions and stress functions. These two state
equations can account for the material gradient characteristic along the radial direction.
Since it is di$cult to solve the state equations with variable coe$cients directly, the
laminated approximation method is employed for which the sphere is divided into a certain
number of layers with a su$ciently small equal thickness. The state equations are then
transformed approximately into the ones with constant coe$cients within each layer. The
matrix theory is then used to obtain the solutions, which give the relationships between the
state variables at the upper surface and those at the lower surface of each layer. Allowing for
the continuity conditions at each interface and the free conditions at the inner and outer
boundary surfaces, frequency equations corresponding to two independent classes of
vibrations are obtained. Numerical study is also given in the paper and the e!ect of the
inhomogeneity parameter is discussed.

2. BASIC EQUATIONS

Toupin [18] has pointed out that a ceramic spherical shell before polarization is
isotropic, but after the shell is permanently polarized in the radial direction by applying
a large static voltage between its inner and outer surfaces, the point symmetry of the
material is transversely isotropic with an axis of symmetry in the direction of the radius to
the centre of the spherical shell. Such kind of transverse isotropy is also known as spherical
isotropy. Ko and Pond [19] have used the constitutive relations for spherical isotropy to
analyze a practical spherical multimode hydrophone. The basic equations of
three-dimensional spherically isotropic piezoelasticity can be found in references [4, 11], for
example. For the sake of the analysis to be followed, we give these equations here in
a di!erent way. Assuming the center of anisotropy coincident with the origin of spherical
co-ordinate (r, �, �), the constitutive relations can be rewritten as follows:
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where �
�
"r�/�r, �
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, � and D
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where s
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is the strain tensor, u
�
(i"r, �, �) are three displacement components. The

equations of motion can easily be transformed into the following form:
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where � is the density. The charge equation of electrostatics also can be rewritten as
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This paper shall consider the free vibrations of a functionally graded piezoceramic hollow
sphere. We here assume that the elastic constants c

��
, the dielectric constants �

��
, the

piezoelectric constants e
��
as well as the mass density � all can be arbitrary functions of the

radial co-ordinates r.

3. DERIVATION OF STATE EQUATIONS

The following separation formulae are employed:
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where �,G and w are three displacement functions while �
�
and �

�
are two stress functions.
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By employing equations (5) and (6), through some lengthy mathematical manipulations,
we can transfer equations (1)}(4) into the following equations:
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where ��
�
"��/���#cot � (�/��)#csc� � (��/���) is the two-dimensional Laplacian

operator on a spherical surface, P is an operator matrix, of which the non-zero elements are
given as follows:
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For the non-axisymmetric free vibration of a closed spherical shell, it can be assumed that

�
�
"bc�

��

�
�

���

	
�
���

�
��
(�)S�

�
(�, �) e���, �"b

�
�

���

	
�
���

�
�
(�)S�

�
(�, �)e���,

�
��
"bc�

��

�
�

���

	
�
���

�
��
(�)S�

�
(�, �) e���, �

�
"bc�

��

�
�

���

	
�
���

�
��
(�)S�

�
(�, �)e���,

G"b
�
�

���

	
�
���

G
�
(�)S�

�
(�, �) e���, w"b

�
�

���

	
�
���

w
�
(�)S�

�
(�, �)e���,

�
�
"be�

��

�
�

���

	
�
���

�
��
(�)S�

�
(�, �) e���, �"(be�

��
/��

��
)

�
�

���

	
�
���

�
�
(�)S�

�
(�, �)e���,

(11)



VIBRATION OF PIEZOCERAMIC SPHERE 107
where S�
�
(�, �)"P�

�
(cos �)e��( are the spherical harmonic functions and P�
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(x) are the

associated Legendre polynomials, n and m are integers, � is the circular frequency, �"r/b is
the dimensionless radial co-ordinate, b is the outer radius of the spherical shell,
c�
��
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at the inner surface r"a, i.e., c�
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Substituting equation (11) into equations (7) and (8), gives
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where l"n(n#1), J"�����/��, ��"b�����/c�
��

is the non-dimensional frequency,
��"�

���
is the value of the mass density at the inner surface. At this stage, we have

established two separated state equations with variable coe$cients directly based on the
three-dimensional piezoelasticity equations.

4. LAMINATED APPROXIMATION THEORY AND THE SOLUTIONS

Since it is di$cult to solve the state equations with variable coe$cients directly, we here
intend to employ the laminated approximation theory [12, 13] to turn them into the ones
with constant coe$cients. We "rst divide the sphere into p equal layers (see Figure 1), each
with a su$ciently small thickness h/p, here h"b!a is the thickness of the shell. Since each
layer is thin enough, the material constants within it can be assumed constant rather than
variable. In the following, their values at each mediate plane are to be taken, i.e., in
equations (13) and (14), we have c

��
"c
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, etc. in the jth layer. Meanwhile,
since the matrix M

�
still includes the variable �, we make it equal its value also at the

mediate plane, i.e., �"�
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)/(2p) in the jth layer, here �
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"a/b is the ratio



Figure 1. The geometry of a hollow sphere divided into p layers.
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between the inner radius and the outer radius. Thus, the coe$cient matrix M
�

in
equation (12) becomes constant within the jth layer (denoted as M�

�
in the following) and the

solutions can be obtained as follows:
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The continuity conditions at each interface demand that the eight state variables be

continuous. Thus one obtains from equation (15)
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degenerates to the following equation when n"0:
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We can obtain similarly
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where T
��

is a fourth order square matrix.

5. FREQUENCY EQUATIONS

For the free vibration problem, we have the following boundary conditions at the inner
and outer spherical surfaces:
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It can be seen that either the controlling equations as well as the boundary and continuity
conditions all can be separated into two independent classes: The "rst one is only related to
two state variables �
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and �, while the second one is related to the other six state variables.

Utilizing equation (20), one gets from equations (16) and (18)
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For non-trivial solutions, equations (21)}(23) give the frequency equations of two
independent classes of vibrations, respectively,
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for the "rst class, and
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for the second class. In equations (24)}(26), ¹
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represents the element on the ith row and
jth column of the matrix T
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. It should be noted that the frequency equation of the second

class for n"0 is shown in equation (25) rather than the following equation:
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This follows because, when the inner spherical surface is free from the normal electric
displacement the outer surface will naturally be free from the normal electric displacement
as one can see from equation (17) directly. Thus, the third equation in equation (23) is
automatically satis"ed while the "rst equation gives rise to equation (25).

It is noted here that since the "rst class of vibration is only related to �
�
and � and no

electric parameters are involved, it is exactly the same as that for the corresponding elastic
sphere.

For calculating the mode shapes, once the frequency is obtained, the eigenstate vectors at
the inner and/or outer spherical surfaces can be solved from equations (21)}(23). The state
vectors at any interior point can then be calculated by the following formula:
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6. NUMERICAL EXAMPLES

It is pointed out that there are an in"nite number of frequencies for each class of vibration
due to the three-dimensional property of the resulting frequency equations. In the following,
we only give out the lowest non-zero natural frequencies (�'0) that are of the most



TABLE 1

Material constants of PZ¹-4 and ZnO
(;nits: c
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*10�� N/m�, e
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*C/m�, �
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*10��� F/m, �*kg/m�)

Materials Material constants
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TABLE 2

Comparison and convergence study of the present method

The "rst class The second class

n 1 2 3 4 0 1 2 3

p"19 5)96091 2)71474 4)19810 5)53388 6)05719 4)84009 2)82733 4)65537
�"0 p"20 5)96094 2)71459 4)19783 5)53351 6)05722 4)84006 2)82735 4)65530

Chen [11] 5)96125 2)71320 4)19541 5)53001 6)05750 4)83984 2)82725 4)65467

�"10
p"19 8)65683 3)76146 5)83179 7)69518 8)20587 6)35983 3)57541 5)76395
p"20 8)65693 3)76126 5)83144 7)69467 8)20575 6)35965 3)57531 5)76379
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importance in practical engineering. Notice that when n"1, there are modes
corresponding to the rigid-body rotation and rigid-body translation for the "rst and second
classes of vibrations, respectively, and when n"0, there is a mode of constant potential. In
these cases, the natural frequency equals zero.

Consider an FGM piezoceramic hollow sphere with the inner-radius-to-outer-radius
ratio �

�
"0)3. The functionally graded property is represented by [21]
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where z"r!a, � is the inhomogeneity parameter or gradient index, M indicates an
arbitrary material constant, andM

�
andM


are the material constants of PZT-4 and ZnO

respectively [22, 23]. It is noted here that the three material constants c
��

, c
��

and c
��

of
PZT-4 given in reference [23] are wrong when they are cited from Dieulesaint and
Royer [22]. These material constants are listed in Table 1 for the readers' convenience.

The "rst attempt here is to verify the validity as well as the covergence characteristic of
the method. Table 2 gives the lowest natural frequencies (�) of the "rst and second classes,
respectively, calculated when the sphere is divided into 19 equal layers and 20 equal layers.
Two values of gradient index are adopted. In particular, for a homogeneous sphere (�"0),
results are compared to that obtained using di!erent three-dimensional methods [11]. It is
seen that good agreement is obtained between the two methods, which validates the present
method. Furthermore, the di!erence between the results of p"19 and 20 is completely



Figure 2. Variation of � versus � for the "rst class: *�*, n"1; *�*, n"2; *£*, n"3; *�*, n"5.

Figure 3. Variation of � versus � for the second class:*�*, n"0;*�*, n"1;*£*, n"2;*�*, n"4;*�*,
n"1 (elastic); *�*, n"4 (elastic).
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negligible. Thus in the following, we take p"20 and the results are believed to be with high
precision.

Figures 2 and 3 display curves of the lowest non-dimensional frequency � of the "rst and
second classes, respectively, versus the gradient index �. From the "gures, it is shown that
with the increase of the gradient index, the natural frequency increases for all modes
considered. The variation is more signi"cant when 0)�)5. It should be noted that the
frequencies of the sphere for �"0 correspond to those of a homogeneous PZT-4 hollow
sphere, while those for �PRcorresponds to a homogeneous ZnO hollow sphere. This is
obvious as we can see from equation (30). To show the piezoelectric e!ect, two curves
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corresponding to the FGM elastic sphere neglecting the piezoelectric e!ect are
simultaneously given in Figure 3 for two mode numbers n"1 and 4. It is seen that for an
FGM sphere, the piezoelectric e!ect raises the natural frequency and the increment is also
associated with the gradient index.

7. CONCLUDING REMARKS

(1) The two state equations presented here are order reduced when compared to the
original controlling equations that will be convenient for solving practical problems.
For the free vibration problem, it is concluded rather naturally that there are two
independent classes of vibrations. In particular, there is no piezoelectric or dielectric
parameter involved in the "rst class, which is actually identical to the one of the
corresponding spherically isotropic elastic sphere.

(2) It also can be seen that the integer m, which represents the non-axisymmetric
characteristic of the vibration, does not appear in the frequency equations. This is
because any non-axisymmetric modes of vibrations can be obtained by the
superposition of the axisymmetric ones with respect to di!erent oriented spherical
co-ordinates of identical natural frequency. The explanation has been given in detail by
Silbiger [24] in the case of a homogeneous, isotropic, elastic hollow sphere.

(3) The present method is completely based upon three-dimensional piezoelasticity without
introducing any assumptions on deformation. The only approximation is obtained
when the laminated model is employed. However, as the number of layers increases, the
present solution will gradually approach the exact solution. Therefore, the present
method may be a benchmark for verifying two-dimensional plate/shell theories or
numerical methods. It also can be employed to analyze the free vibrations of
multilayered piezoceramic hollow spheres.

(4) Numerical results show that the e!ect of the material gradient index on natural
frequencies is signi"cant, especially in the interval �3[0, 5]. This point may be very
important for the practical design of FGM plates and shells.

ACKNOWLEDGMENT

The work was supported by the National Natural Science Foundation of China
(No. 10002016).

REFERENCES

1. P. BISEGNA and F. MACERI 1996 Journal of Applied Mechanics 63, 628}638. An exact
three-dimensional solution for simply supported rectangular piezoelectric plates.

2. S. KAPURIA, P. C. DUMIR and S. SENGUPTA 1996 Computers and Structures 61, 1085}1099. Exact
piezothermoelastic axisymmetric solution of a "nite transversely isotropic cylindrical shell.

3. H. J. DING, W. Q. CHEN, Y. M. GUO and Q. D. YANG 1997 International Journal of Solids and
Structures 34, 2025}2034. Free vibrations of piezoelectric cyindrical shells "lled with compressible
#uid.

4. N. A. SHUL'GA 1993 Soviet Applied Mechanics 29, 812}817. Harmonic electroelastic oscillation of
spherical bodies.

5. W. Q. CHEN and H. J. DING 1998 Acta Mechanica Sinica 14, 257}265. Exact static analysis of
a rotating piezoelectric spherical shell.

6. W. Q. CHEN, H. J. DING and R. Q. XU 2001 Computers and Structures 79, 653}663. Three
dimensional free vibration analysis of a #uid-"lled piezoceramic hollow sphere.



114 W. Q. CHEN E¹ A¸.
7. Y. TANIGAWA 1995 Applied Mechanics Reviews 48, 287}300. Some basic thermoelastic problems
for nonhomogeneous structural materials.

8. C. T. LOY, K. Y. LAM and J. N. REDDY 1999 International Journal of Mechanical Sciences 41,
309}324. Vibration of functionally graded cylindrical shells.

9. Z. Q. CHENG and R. C. BATRA 2000 Journal of Sound and <ibration 229, 879}895. Exact
correspondence between eigenvalues of membranes and functionally graded simply supported
polygonal plates.

10. W. Q. CHEN, X. WANG and H. J. DING 1999 Journal of the Acoustical Society of America 106,
2588}2594. Free vibration of a #uid-"lled hollow sphere of a functionally graded material with
spherical isotropy.

11. W. Q. CHEN 2000 Journal of Sound and <ibration 229, 833}860. Vibration theory of
non-homogeneous, spherically isotropic piezoelastic bodies.

12. Y. OOTAO and Y. TANIGAWA 2000 International Journal of Solids and Structures 37, 4377}4401.
Three-dimensional transient piezothermoelasticity in functionally graded rectangular plate
bonded to a piezoelectric plate.

13. B. L. WANG, J. C. HAN and S. Y. DU 1999 ¹heoretical and Applied Fracture Mechanics 32,
165}175. Functionally graded penny-shaped cracks under dynamic loading.

14. W. Q. CHEN, J. LIANG and H. J. DING 1997 Acta Materiae Compositae Sinica 14, 108}115. Three
dimensional analysis of bending problems of thick piezoelectric composite rectangular plates (in
Chinese).

15. W. Q. CHEN, R. Q. XU and H. J. DING 1998 Journal of Sound and <ibration 218, 741}748. On free
vibration of a piezoelectric composite rectangular plate.

16. H. J. DING, R. Q. XU and F. L. GUO 1999 Science in China (E) 42, 388}395. Exact axisymmetric
solution of laminated transversely isotropic piezoelectric circular plates (I)*exact solutions for
piezoelectric circular plate.

17. J. G. WANG 1999 Science in China (A) 42, 1323}1331. State vector solutions for nonaxisymmetric
problem of multilayered half space piezoelectric medium.

18. R. A. TOUPIN 1959 Journal of the Acoustical Society of America 31, 315}318. Piezoelectric relations
and the radial deformation of a polarized spherical shell.

19. S. H. KO and H. L. POND 1978 Journal of the Acoustical Society of America 64, 1270}1277.
Improved design of spherical multimode hydrophone.

20. R. BELLMAN 1970 Introduction of Matrix Analysis. New York: McGraw-Hill.
21. J. N. REDDY, C. M. WANG and S. KITIPORNCHAI 1999 European Journal of Mechanics, A/Solids

18, 185}199. Axisymmetric bending of functionally graded circular and annular plates.
22. E. DIEULESAINT and D. ROYER 1980 Elastic =aves in Solids. New York: John Wiley.
23. Y. Y. TANG and K. XU 1994 International Journal of Engineering Science 32, 1579}1591. Exact

solutions of piezoelectric materials with moving screw and edge dislocation.
24. A. SILBIGER 1962 Journal of the Acoustical Society of America 34, 862. Non-axisymmetricmodes of

vibrations of thin spherical shell.


	1. INTRODUCTION
	2. BASIC EQUATIONS
	3. DERIVATION OF STATE EQUATIONS
	4. LAMINATED APPROXIMATION THEORY AND THE SOLUTIONS
	Figure 1

	5. FREQUENCY EQUATIONS
	6. NUMERICAL EXAMPLES
	TABLE 1
	TABLE 2
	Figure 2
	Figure 3

	7. CONCLUDING REMARKS
	ACKNOWLEDGMENT
	REFERENCES

